typo et modifi formule math
This commit is contained in:
@@ -17,12 +17,12 @@ Il vous est deja arrivé de prendre des décisions en suivant une logique. Dans
|
|||||||
Cela vous semble simple de définir la logique, mais en réalité, mise en pratique, cela devient plus complexe à commenter :
|
Cela vous semble simple de définir la logique, mais en réalité, mise en pratique, cela devient plus complexe à commenter :
|
||||||
mathématiquement, la logique n'a pas grand chose à voir avec celle dont on use au quotidien.
|
mathématiquement, la logique n'a pas grand chose à voir avec celle dont on use au quotidien.
|
||||||
|
|
||||||
En informatique, une chose primordiale est l'utilisation et la mise au point d'algorithme, et donc de prise de décision.
|
En informatique, une chose primordiale est l'utilisation et la mise au point d'algorithmes, et donc de prise de décision.
|
||||||
Ces décisions sont prises par le programme informatique via un shcéma de pensée que l'on peut représenter comme ceci :
|
Ces décisions sont prises par le programme informatique via un schéma de pensée que l'on peut représenter comme ceci :
|
||||||
|
|
||||||
<img src="assets/diagramme.png" alt="Diagramme" style="zoom:50%;" />
|
<img src="assets/diagramme.png" alt="Diagramme" style="zoom:50%;" />
|
||||||
|
|
||||||
D'un point de vue mathématique ou informatique, ces paramètres et prises de décision sont de type booléen, (vrai ou faux)
|
D'un point de vue mathématique ou informatique, ces paramètres et prises de décision sont de type booléen (vrai ou faux).
|
||||||
|
|
||||||
On peut par exemple prendre des problèmes assez élémentaires :
|
On peut par exemple prendre des problèmes assez élémentaires :
|
||||||
|
|
||||||
@@ -35,7 +35,7 @@ Dans notre premier cas, nous avons en **instance de départ :** un entier nature
|
|||||||
|
|
||||||
### Définition
|
### Définition
|
||||||
|
|
||||||
En informatique ou mathématiques, on peut parler d'une **fonction algorithmique**. Quand le résultat de celle ci, c'est à dire ce qu'elle *renvoit*, est un boléen, on parle de ***prédicat***
|
En informatique ou mathématiques, on peut parler d'une **fonction algorithmique**. Quand le résultat de celle ci, c'est à dire ce qu'elle *renvoit*, est un boléen, on parle de ***prédicat***.
|
||||||
|
|
||||||
Un ***prédicat*** est une fonction qui ne prendra que des valeurs booléennes:
|
Un ***prédicat*** est une fonction qui ne prendra que des valeurs booléennes:
|
||||||
|
|
||||||
@@ -122,7 +122,7 @@ Imaginez, si votre programme, logiciel ou jeu vidéo favori rencontrait un probl
|
|||||||
|
|
||||||
Exercice : Prouver qu'un nombre est pair :
|
Exercice : Prouver qu'un nombre est pair :
|
||||||
|
|
||||||
Nous allons définir une fonction \\(f : N --> {Vrai, Faux} \\) telle que f(n) est vraie si et seulement si \\(n\\)%2 == 0
|
Nous allons définir une fonction $f : \mathbb{N} \rightarrow \{\text{Vrai}, \text{Faux}\}$ telle que $f(n)$ est vraie si et seulement si $n \bmod 2 = 0$.
|
||||||
|
|
||||||
Nous savons que ce problème est résoluble et donc ***décidable***
|
Nous savons que ce problème est résoluble et donc ***décidable***
|
||||||
|
|
||||||
|
|||||||
Reference in New Issue
Block a user